SAULT COLLEGE OF" APPLIED ARTS % TECHNOLOGY

COURSE OUILINE

HATHEMAT1CS < Caleulus >

Newt____ReVislonJ

APPROMEDt

Chai rperson

Date

HATHEHATICS (Calculus)

HTH 20S-4

Course Name

Course Humber

When the studer-it has successfully completed this course? he will have demonstrated an acceptable ability to pass tests based uPon the course topics as listed elsewhere* If? after completing the course? the studeni <u>tsk.es</u> fuT^ther courses (or employment) iri which he is reauir^ed to apply ti" itiaterial > he should then? through practice be able to develop a siood cQitmandinthissfjbJectftaller*

i^EIblQD QE ^BBESSMEfcll. .CGEAOING HEIHDD.).t

The studerltswilU beas *iessed by writtentests jincluding in a Jorperiodic teii>ts based ijPon larL^e b!Locks of the subject matter and some unannounced short ouiszes on current work? the latter bein^ siven at the discretion (•Lie inst TMjctor « A final test on the whole course may also be included* letter ^rade will be based upon a student's weighted average of all his test results* See also the mathematics department's annual publication ' THE HATHEHATICS STUDENT" for further details* This publication is made ijVai 13ble to the studerits early int eac;h academic year*

lexibqqkisl^

"Basic Technical Hathematics with Calculus" ~ Uashin^^ton

GBJECIIUES?

The basic objective is for the student to develop sn understanding of th methods studied? knowledge of the facts presented and sn ability to use these *iri* the sol<jtion of problems* For this purpose e>?ercises are sssisined*- Tests will reflect the sort of work contained in the assignments* The level of competency demanded is the level required to obtain overall PsssinsS averasie on the tests* The material to be covered is lis on the followins*. $PB^{*}e^{*}$

TOPIC NUHBER	PEFaODS	TOPIC DESCRIPTION	REFEPENC
	IB	Ibe Deriyatiye	Text? Ch
		Iimxts? slope? deriv3tive? Delta Method? derivatives of pcjlyno(Lials?Prod <jetrule? Quotient Rule? Chain Rule</jetrule? 	Exercise 22-1 to 229 <ps< td=""></ps<>
	10	^B&iicstiQDs of the Dejciyatiwe	$T e > t ? C h^{\wedge}$
		Teni [^] ents <i>andi</i> normals CurVesketc\) <i>in</i> [^] Ha; iimum and miniirtum	EKercise;: 23-1? 23- 23-6? 23- (part)
	1,^	Ipte^ratioD	Text? Ch.
		Differentials? antiderivatives? indefinite inte*^ral? <i>a res</i> under a curve? definite intef{Tal	E>iercises 24-1 to 2 24-7 (par
		^EslicatioDS of iDte^ratioD	Text? Ch.
		Applications of indefinite intei^ral? <i>BreB9</i> volumes Pressure on a submerged plate? work? flow over a weir	EXercises 25-1 to 2\ 25-6 (pari 25-7 (pari Printed S^